

Duct sensor NL-ECO-CO2-D is used to monitor air quality inside an air duct and then for effective control of ventilation (HVAC) systems according to actual air quality. The sensor continuously monitors concentration of carbon dioxide (CO_2) in air. It can be effectively used to control air quality in offices, classrooms, shopping centers, homes, restaurants, fitness centers, commercial buildings, etc.

- > measures CO₂, optical principle NDIR
- > LED indication with automatic turn off at night
- > analog voltage output 0-10V
- > output relay NO/C
- > easy air duct mounting
- doesn't need maintenance or calibration during operation
- > long-term stability
- > expected lifetime >10 years

Description

The measuring of CO_2 is based on the principle of infrared radiation attenuation dependence on the CO_2 concentration in the air (NDIR).

Built-in auto-calibration function ensures excellent long term stability.

The sensor has one analog output for the actual concentration of CO₂.

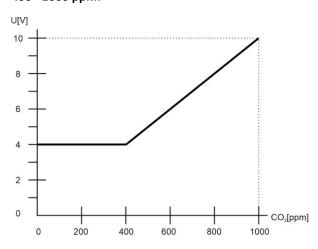
The concentration of CO_2 is a good indicator of the current quality of the indoor air, so the sensor is used for effective control of ventilation and recuperation units.

The trigger level of CO₂ concentration output relay can be set by a rotary element over the whole measurement range.

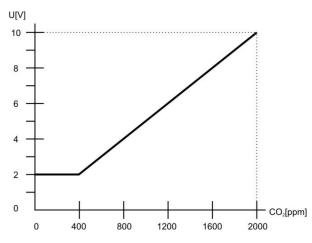
Current air quality can be easily checked by three LED indicators with built-in automatic shut-off at night.

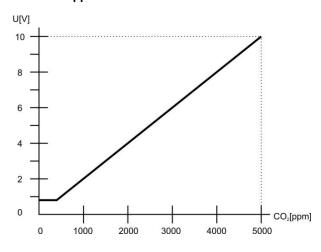
Explanation of abbreviations and technical terms can be found on our website in the <u>Glossary</u> section.

Technical data


Parameter	Value	Unit
Supply voltage range	12–35	V DC
	12–24	V AC
Consumption	max 1,5	W
CO ₂ measuring range ¹⁾	400 - 1000 400 - 2000 400 - 5000	ppm
CO ₂ accuracy ²⁾		
 for ranges 400 – 1000 and 400 - 2000 ppm for range 400 - 5000 ppm 	± 40 ppm + ±4 % of reading ± 60 ppm + ±4 % of reading	
CO ₂ relay - hysteresis	5 % from range (100ppm/250ppm)	
CO ₂ rate rise	max 1	min
CO ₂ step response	(90 %) 80	S
Voltage output 3)	0–10	V DC
Max. switching voltage	250/30	V AC / V DC
Max. switching current	5/5	A AC / A DC
Working humidity non condensing	0–95 %	RH
Working temperature	0 to +50	°C
Storage temperature	-20 to +60	°C
Expected lifetime	10	years
Ingress protection	IP20	
Dimensions	252x120x80	mm
1) Measuring range can be chosen by jumper setting		

- Measuring range can be chosen by jumper setting.
- ²⁾ At 15–35 °C, 0-80% RH.
- Minimum achievable output value corresponds to minimum value of the measuring range.




Voltage output versus CO₂ concentration for range 400 - 1000 ppm:

Voltage output versus CO₂ concentration for range 400 - 2000 ppm:

Voltage output versus CO₂ concentration for range 400 - 5000 ppm:

Protronix s.r.o., Pardubická 177, Chrudim 537 01, Czech Republic

CO₂ sensor autocalibration function

<u>Autocalibration</u> compensates for long-term aging of the key components of the sensor. This function is available only during permanent sensor power supply. Calibration during operation throughout the lifetime of the sensor is not needed.

LED indication description

White LED lights: O

- Less than 600 ppm CO₂.
 - excellent air quality, low concentrations of CO₂
 - maintaining this level is not cost-effective especially during the winter season

Green LED lights: ○ ● ○

- More than or equal to 600 ppm CO₂, less than or equal to 1200 ppm CO₂.
 - optimal balance of air quality and energy consumption for ventilation and air condition
 - maintaining the CO2 concentration in this range does not significantly reduce the comfort of the indoor environment

Yellow LED lights: ○ ○ ●

- More than 1200 ppm CO₂.
 - higher concentration of CO₂ lower air quality, this can already cause negative effects associated with low air quality such as feeling uncomfortable, restlessness, weakness, fatigue, headache, dizziness etc.

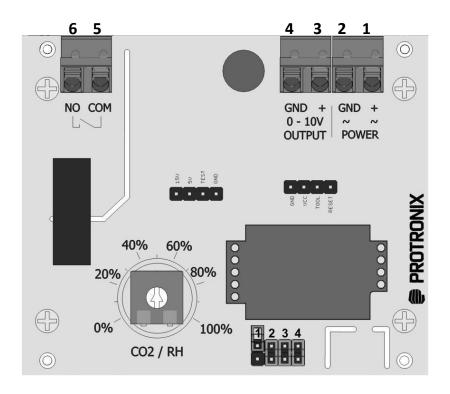
Sensor start after power on

All three LEDs are shining simultaneously in the meantime, pending the availability of the first measured value. But no longer than 10 seconds. The sensor is fully operational after 1 minute since power on.

The declared accuracy is reached after 4 days of continuous power supply.

Sensor failure indication

All three LED's lights up at the same time permanently.


www.protronix.eu www.careforair.eu

Electronic board controls and terminals

Terminals

POWER

1. ~ + supply AC or DC (+) plus pole	
2. ~ GND	supply AC or DC (-) minus pole, GND

OUTPUT

3. +	analog output 0-10 V
4. GND	output – minus pole, GND

5. COM	output relay, common contact	
6. NO	output relay, normally open contact	

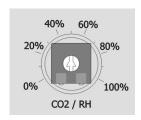
Jumpers

jumper	meaning	fitted	not fitted
2	LED indication	enabled	disabled
3	autocalibration	enabled	disabled

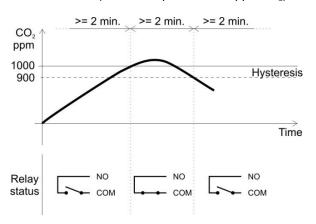
Measuring range setting

range	jumper 1	jumper 4
400 – 1000 ppm	closed	open
400 – 2000 ppm	open	closed
400 – 5000 ppm	open	open

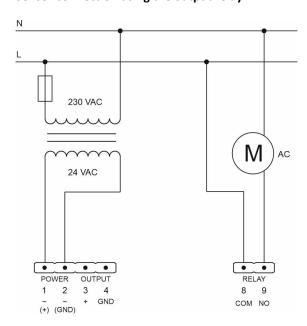
Factory setting


LED indication	enabled	
Autocalibration	enabled	
Switching level	50%	
Measuring range	2000 ppm CO ₂	

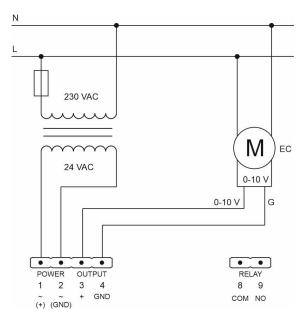
Setting the relay trigger switching level using rotary selector


The 0 - 100% selector setting corresponds to the value of selected CO₂ measuring range – see example below.

The relay switches on when the level measured value rises above the level of the rotary selector. The relay switches off when the level measured value falls below the level of the rotary selector minus hysteresis value of 5% from measuring range. Minimal lag between changes in state relays are 2 minutes.

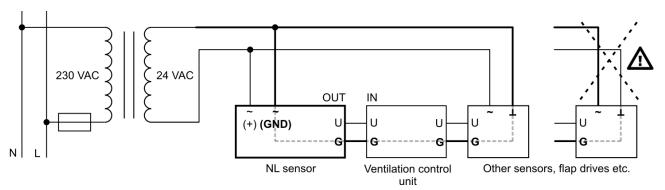

Selector value	CO2 (1000pm)	CO2 (2000pm)	CO2 (5000pm)
0 %	0	0	0
10 %	100	200	500
20 %	200	400	1000
30 %	300	600	1500
40 %	400	800	2000
50 %	500	1000	2500
60 %	600	1200	3000
70 %	700	1400	3500
80 %	800	1600	4000
90 %	900	1800	4500
100 %	1000	2000	5000

Relay switching example - selected measuring range 2000ppm, hysteresis 5% = 100ppm, selected switching level value 50% (50% correspond to 1000ppm CO_2)

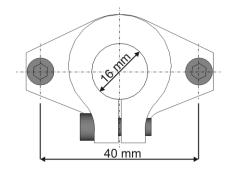


Protronix s.r.o., Pardubická 177, Chrudim 537 01, Czech Republic

Sensor connection using the output relay


Sensor connection - direct EC motor control using signal 0-10 V

If you connect other devices or more sensors to the same AC power source as the NL sensor, it is necessary to meet GND wiring of all analog inputs and outputs, as well as power wires.



Opening the box

Unscrew the four cover screws and remove the cover with electronics.

Duct mounting clamp

Installation

Way to use

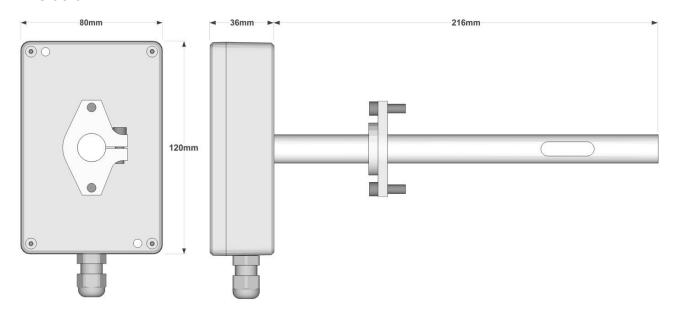
The product is intended for indoor use only.

- Safety warning
- The connection and operation of the product must be carried out by a professionally qualified person according to the procedures and information provided in this manual.
- Comply with the given storage and operating conditions of the product. Failure to comply with these conditions may result in damage to the product and possibly loss of warranty.
- Violent mechanical shocks to the sensor must be avoided.
- In case of a defect, do not try to repair the product yourself; instead contact the supplier or the manufacturer directly.

End of product life

Discard the product in according to the electronic waste law and the EU directives.

Protronix s.r.o., Pardubická 177, Chrudim 537 01, Czech Republic


www.protronix.eu www.careforair.eu

Dimensions

The producer reserves the right of technical changes in order to product improvements its properties and functions without previous notice.